TWO-GYROSCOPIC SENSITIVE ELEMENT OF THE STABILIZATION COMPLEX

Keywords: sensitive element, stabilization complex, methodical errors, measurement of acceleration

Abstract

The proposed two-gyroscopic SE is designed to measure acceleration and belongs to the area of acceleration measurements on a moving base and can be used in stabilization systems. The purpose of the article is to increase the accuracy of acceleration determination. To do this, it is necessary to eliminate methodical errors of gyroscopic moments-obstacle from the cross angular velocities of the base and from the angular velocity of the Earth's rotation. The proposed two-gyro SE consists of a three-stage gyroscope located in the inner and outer frames, equipped with an inter-frame correction system, which includes an angle sensor located on the axis of the inner frame of the gyroscope, the output of which is connected to a moment sensor located on the axis of the outer frame.

What is new in the two-gyro SE stabilizer is the application on the axis of the inner frame of the gyroscope with the possibility of rotating the rotor in the opposite direction of the main gyroscope, equipped with an inter frame correction system, which includes an electric angle sensor located on the axis of the inner frame of the gyroscope, to the output of which the control winding of the electric moment sensor is connected. Located on the axis of the outer frame, and both gyroscopes are equipped with two additional angle sensors located on the axes of the outer frames, the outputs of which are connected to two additional moment sensors located on one axis of the inner frame, the centers of gravity of the two three-stage gyroscopes are equally shifted to one side along the axes of rotation gyroscope rotors relative to the axes of the outer frames.

Downloads

Download data is not yet available.

| Abstract views: 39 | PDF Downloads: 23 |

References

Tsiruk, V. G., Bezvesilna, O. M., Malyarov, S. P., Talanchuk, P. M. (2016). Basics of the Theory and Principles of the Construction of the Stabilizer of Weapons of Light Armored Vehicles: a monograph, Kyiv: State Enterprise "Priorities", 230 p. [in Ukrainian].

Bezvesilna, O. M. (2001). Acceleration measurement, Lybid, Kiev, 261 p. [in Russian].

Bezvesilna, O., Kamiński, M. (2017). Gravimeters of Aviation Gravimetric System: Classification, Comparative Analysis, Prospects. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds). Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, 550, 496-504, Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_48.

Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Nowicki, M., Szewczyk, R. (2016). Piezoelectric Gravimeter of the Aviation Gravimetric System. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds). Challenges in Automation, Robotics and Measurement Techniques. ICA 2016. Advances in Intelligent Systems and Computing, 440, 753-761, Springer, Cham. https://doi.org/10.1007/978-3-319-29357-8_65.

Tsiruk, V. G., Bezvesilna, O. M., Tkachuk, A. G. (2014). Coriolis Vibrational Gyroscope as Sensitive Element of the Complex Management Systems Stabilization. Technological complexes, Lutsk, 2 (10), 142-147. URL: http://nbuv.gov.ua/UJRN/Tehkom_2014_2_22. [in Ukrainian].

Kokhan, Y. N., Kvasnikov, V. P., Tsyruk, V. G., Malyarov, S. P., & Kokhan, Y. N. (2013). High-reliability Vibration Gyroscope with Digital Output. Bulletin of the Engineering Academy of Ukraine, 3-4, 27-30. URL: http://nbuv.gov.ua/UJRN/Viau_2013_3-4_7. [in Russian].

Bezvesilna, O., Tkachuk, A., Nechai, S., Khylchenko, T. (2017). Introducing the Principle of Constructing an Aviation Gravimetric System with any Type of Gravimeter. Eastern European Journal of Enterprise Technologies, 1 (7-85), 45-56. https://doi.org/10.15587/1729-4061.2017.92941.

Korobiichuk, I., Bezvesilna, O., Kachniarz, M., Tkachuk, A., & Chilchenko, T. (2017). Two-channel MEMS Gravimeter of the Automated Aircraft Gravimetric System. In: Szewczyk, R., Kaliczyńska, M. (eds), Recent Advances in Systems, Control and Information Technology. SCIT 2016. Advances in Intelligent Systems and Computing, 543, Springer, Cham. 481-487. https://doi.org/10.1007/978-3-319-48923-0_51.

Bezvesil'naya, E. N. (1989). Increase of the Accuracy of a Gyroscopic Meter of Navigation Parameters. Soviet Applied Mechanics, 25 (6), 100-107. [in Russian].

Evgeniev, V. S. (1981). On the Systematic Errors of a Gyro-pendulum Accelerometer on a Vibrating Base, "Applied Mechanics". Scientific and theoretical journal of the National Academy of Sciences, 17 (1), 54-61. [in Russian].

Bezvesil'naya, E. N. (1990). Errors of a Gyroscopic Linear-acceleration Sensor. Soviet Applied Mechanics, 3, 62-65. [in Russian].

Bezvesil'naya, E. N. (1995). Increasing the Precision of Measurements of Free-fall Acceleration. International Applied Mechanics, 2, 92-96. https://doi.org/10.1007/BF00846769.

Bezvesilna, O. M., Tsyruk, V. G. (2015). Scientific, Technological, Organizational and Implementing Foundations Creation New of the Complex Stabilizer Armament Lungs Armored Cars. State Enterprise "Prioritety", Kyiv. 176 p. [in Ukrainian].

Hu, H.-J., Ma, J.-G. (2016). Linear Accelerometer-assisted High Accurate Stabilizing and Tracking, Qiangjiguang Yu Lizishu. High Power Laser Part. Beams, 18 (5), 769-772.

Sokolov, A. V., Krasnov A. A., Starosel'tsev, L. P., Dzyuba A. N. (2015). Development of a Gyro Stabilization System with Fiber-optic Gyroscopes for an Air-sea Gravimeter. Gyroscopy Navig, 6 (4), 338-343.

Popelka, V. (2014). A Self-stabilizing Platform. Proceedings of the 2014 15th International Carpathian Control Conference, ICCC 2014, 458-462, 6843648.

Pathak, A., Brei, D., Luntz, J., LaVigna, C., Kwatn, H. (2007). Design and Quasi-static Characterization of SMASH (SMA Stabilizing Handgrip), Proc. SPIE – Int. Soc. Opt. Eng. 6523 (2007) 652304.

Tymchyk, H. S., Unmarried O. M. (2012). Technological Measurements and Devices. Transforming Devices of Devices: Textbook, Zhytomyr, ZhDTU, 812 p. [in Ukrainian].

Tymchyk, G. S, Bezvesilna, O. M. (2015). Scientific research in the field of automation and computer-integrated technologies, Textbook, Kyiv, NVO Priorities, 592 p. [in Ukrainian].

Korobiichuk, I. (2015). Stabilization system of aviation gravimeter. International Journal of Scientific & Engineering Research, 6 (8), 956-959.

Zbrutskyi, O. V., Balabanov, L. V., Lytvynenko, P. L. (1997). Patent for the Invention No. 15024A. Two-stage Accelerometer, Publ. 30.06.1997, Bul. No. 3.

Akizuki, K., Yamaguchi, K., Morita, Y., Ohashi, Y. (2016). The Effect of Proficiency Level on Measurement Error of Range of Motion. Journal of Physical Therapy Science, 28 (9). 2644-2651. https://doi.org/10.1589/jpts.28. 2644.

Y. Wei, J. Xu, H. Ma. (2015). Servo Control Technique of Gyro Stabilized Platform for Gravimeter. 2014 17th International Conference on Electrical Machines and Systems, ICEMS 2014, 2238-2241, 7013856.

Lai, A., James, DA, Hayes, JP, Harvey, EC (2004). Semi-Automatic Calibration Technique Using Six Inertial Frames of Reference. Proc. of SPIE Ch The International Society for Optical Engineering, 5274, 531-542.

Liu, Y., Ji, T., et al. (2016). Calibration and Compensation for Accelerometer Based on Kalman Filter and a Six-position Method. Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 38 (1), 94-98, 110.

Fan, C., Hu, X., et al. (2014). Observability Analysis of a MEMS INS/GPS Integration System With Gyroscope G-sensitivity Errors. Sensors, 14(9), 16003-16016. https://doi.org/10.3390/s140916003.

Quinchia, A. G, Falco, G., Falletti, E., Dovis, F., Ferrer, C. (2013). A Comparison Between Different Errors Modeling of MEMS Applied to GPS/INS Integrated Systems. Sensors, 13 (8), 9549-9588. https://doi.org/10.3390/s130809549.

Published
2023-12-28
How to Cite
[1]
O. Bezvesilna, L. Kolomiets, Y. Kyrychuk, and T. Tolochko, “TWO-GYROSCOPIC SENSITIVE ELEMENT OF THE STABILIZATION COMPLEX”, Збірник наукових праць Одеської державної академії технічного регулювання та якості, no. 2(23), pp. 30-39, Dec. 2023.