FILM CONDENSATION INSIDE HORIZONTAL PIPES AND MINI CHANNELS

Keywords: heat transfer, condensation, refrigerant, horizontal pipe, minichannel.

Abstract

The article provides a brief description of the semi-empirical model of Ananiev, Boyko and Kruzhilin for calculating heat transfer during the condensation of working substances inside smooth horizontal pipes in a turbulent flow regime. Comparisons of heat transfer calculations based on a semi-empirical model with the results of experimental studies during the condensation of refrigerants, hydrocarbons and specialized substances inside pipes from well-known works by different authors are presented, which indicate good agreement between the results of studies and calculations based on the model, taking into account their boundary values. The presented calculations of heat transfer during condensation inside smooth horizontal pipes and minichannels are performed according to the semiempirical formula of Ananiev, Boyko and Kruzhilin, taking into account the influence of steam velocity on heat transfer processes. The calculation results demonstrate good agreement with the experimental data of various authors on the condensation of refrigerants R22, R134a, R125, R32 , R410A, specialized substances R245fa, Novec649, HFE-7000 and natural hydrocarbons R290, R600a, R1270, and DME for turbulent flow areas.

For engineering practice, the presented semi-empirical model for calculating heat transfer during condensation of water vapor, refrigerants R22, R134a, R32, R410A, specialized substance HFE-7000, natural hydrocarbons R290, R600a, R1270 for smooth horizontal pipes (din > 3 mm) can be recommended. In this case, it is necessary to take into account the limits of application of the boundary values of the model. Calculation of heat transfer coefficients by semi-empirical correlation shows that it improves the description of the experimental data of many authors of works on the condensation of refrigerants R152a, R290, R134a, and R32 inside round minichannels (3 mm ≥ din > 200 μm) under turbulent and transient flow regimes.

Further studies should include the performance of calculations on theoretical and empirical models for calculating heat transfer during condensation inside minichannels in order to create a general method for calculating heat transfer, taking into account the influence of regime flow parameters.

Downloads

Download data is not yet available.

| Abstract views: 49 | PDF Downloads: 30 |

References

Shah M. M. General correlation for heat transfer during condensation in plain tubes: Fur-ther development and verification. ASHRAE Trans. 2013. No 119. P. 3-11.

Agarwal R., Hrnjak P. S. Condensation in two phase and desuperheating zone for R1234ze(E), R134a and R32 in horizontal smooth tubes. Int. J. Refrig. 2015. No 50. P. 172-183.

Macdonald M., Garimella S. Hydrocarbon condensation in horizontal smooth tubes: Part II — Heat transfer coefficient and pressure drop modeling. Int. J. Heat Mass Transf. 2016. No 93. P. 1248-1261.

Dorao C. A., Fernandino M. Simple and general correlation for heat transfer during flow condensation inside plain pipes. Int. J. Heat Mass Transf. 2018. No 122. P. 290-305.

Wang L., Jiao P., Dang C., Hihara E., Dai B. Condensation heat and mass transfer charac-teristics of low GWP zeotropic refrigerant mixture R1234yf/R32 inside a horizontal smooth tube: An experimental study and non-equilibrium film model development. Int. J. Therm. Sci. 2021. No 170. 107090.

Hirose M., Ichinose J., Inoue N. Devel-opment of the general correlation for condensa-tion heat transfer and pressure drop inside hori-zontal 4 mm small-diameter smooth and microfin tubes. Int. J. Refrig. 2018. No 90. P. 238-248.

Bashar M. K., Nakamura K., Kariya K., Miyara A. Condensation heat transfer of R1234yf in a small diameter smooth and micro-fin tube and development of correlation. Int. J. Refrig. 2020. No 120. P. 331-339.

Ananiev E. P., Boyko L. D., Kruzhil-in G. N. Heat transfer in the presence of steam condensation in a horizontal tube. Int. Heat Transf. Conf. August 1961. Colorado. Part 2. P. 290-295.

Boyko L. D. Heat transfer during vapor condensation inside tubes (in Russian). Heat Transfer in the Elements of Power Plants. 1966. P. 197-212.

Marcbant J. H. An electrical-resistance method of determining the mean sur-face temperature of tubes. J. Appl. Mech. 1937. Vol. 4, No. 1. P. 34-37.

Cavallini A., Censi G., Del Col D., Doretti L., Longo G. A., Rossetto L. Experimental investigation on condensation heat transfer and pressure drop of new refrigerants (R134a, R125, R32, R410A, R236ea) in a hori-zontal smooth tube. International Journal of Re-frigeration. 2001. No 24(1). Р. 73-87.

Ghim G., Lee J. Condensation heat trans-fer of low GWP ORC working fluids in a hori-zontal smooth tube. Int. J. Heat Mass Transf. 2017. Vol. 104. P. 718-728.

Park K. J., Jung D., Seo T. Flow condensation heat transfer characteristics of hy-drocarbon refrigerants and dimethyl ether inside a horizontal plain tube. Journal of Multiphase Flow. 2008. No 34(7). Р. 628-635.

Kim Y. J., Jang J., Hrnjak P. S., Kim M. S. Condensation heat transfer of carbon dioxide inside horizontal smooth and microfin tubes at low temperature. Journal of Heat Trans-fer of ASME. 2009. No 131(2). Р. 021501.

Ferreira C. I., Newell T. A., Cha-to J. C., Nan X. R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes. International journal of refrigeration. 2003. No 26(4). Р. 433-441.

Suliman R., Liebenberg L., Mey-er J. P. Improved Flow Pattern Map for Accurate Prediction of the Heat Transfer Coefficients Dur-ing Condensation of R-134a in Smooth Horizon-tal Tubes and Within the Low-Mass Flux Range. Int. J. Heat and Mass Transfer. 2009. No 52(25-26). P. 5701-5711.

Jassim E. W., Newell T. A., Chato J. C.

Prediction of two-phase condensation in horizon-tal tubes using probabilistic flow regime maps. International Journal of Heat and Mass Transfer. 2008. No 51(3) Р. 485-496.

Kwon J. T., Ahn Y. C., Kim H. M. A model-ing of in-tube condensation heat transfer for a turbulent annular film flow with liquid entrain-ment. International Journal of Multiphase Flow. 2001. No 27(5). Р. 911-928.

Liu N., Li M., Sun J., Wang H. S. Heat trans-fer and pressure drop during condensation of R152a in circular and square microchannels, Ex-perimental Thermal and Fluid Science. 2013. No 47. P. 60-67.

Del Col D., Bortolin S., Bortolato M., Rossetto L. Condensation Heat Transfer and Pressure Drop with Propane in a Minichannel, International Refigeration and Air Conditioning Conference. 2012. 2572. P. 1-8.

Matkovic M., Cavallini A., Del Col D., Rossetto L. Experimental study on condensation heat transfer inside a single circular minichannel, International Journal of Heat and Mass Transfer. 2009. No 52(9-1). P. 2311-2323.

Published
2022-11-28
How to Cite
[1]
V. V. Gorin, L. V. Kolomiets, and V. V. Sereda, “FILM CONDENSATION INSIDE HORIZONTAL PIPES AND MINI CHANNELS”, Збірник наукових праць Одеської державної академії технічного регулювання та якості, no. 1 (20), pp. 29-35, Nov. 2022.