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rail car is used into the body of which the construction of the device is arranged.
Keywords: non-automatic weighing calibration device, load carrier, weight-transmitting device, 

weighting bridges, weightless verification, calibration of large-load scales, standard weight measuring in-
strument.
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CONTACT PROBLEM OF COMBINED FOOTING RESTING ON ELASTIC BASE

The contact problem of combined footing resting on elastic half space, or stratified elastic base has 
been analyzed. Unlike simplified common assumptions and design methods of such foundation, here the 
analysis was carried over a two rigid footings connected by elastic flexible foundation beam, taking into ac-
count different characteristics of individual footing parts (rigid vs. flexible) and continuity conditions at their 
joints, with emphasis on their mutual interaction related to underlying soil load transfer. The numerical 
analysis has been performed by combined finite difference and boundary element method on the identical 
quadrilateral mesh.

Keywords: combined footing, interaction, elastic half space, layered elastic medium, FEM, BEM, set-
tlemet.

Introduction.
Combined footings are common form of shal-

low foundations. A system of two rigid footings 
connected by a foundation beam are often referred 
as strap footing, but this term implies a special case 
of combined footing loading, which is exclusively 
used for compensation of highly eccentric concen-
trated loads [1], [2]. However, there are many other 
situations where the combined footings consisting of 
foundation beams and rigid footings are applicable, 
and actually used, and they are subject of this analy-
sis in some broader sense.

Traditionally the use of the of shallow founda-
tions is principally restricted to the relatively light 
structures due to limitations that are mainly related 
to two main reasons: the first being restrictions re-
lated to the shallow soil properties, their intrinsic
non - homogenous nature and complex stress - strain
behavior, and the second lack of correct assessment 
of foundation structure alone and soil - structure in-
teraction effects, which makes predictions of real 
structure behavior unreliable and consequently can
result in their inadequate design [3].

There are many publications considering vari-
ous analytical and numerical methods and solutions 
for contact problems of simple-shaped foundations 
like flexible foundation beams, rigid or flexible 
plates of basic shapes. Some of them are reviewed 
and discussed in [4], [7] monographs [8], [9] and
more related to the presented problem [10], [12] as
well as their experimental verification [13]. But 
there is a lack of those deliberated to the more spe-
cific ones such as combined foundations, due to in-

herent complexity of any thorough analysis of such 
problems due to lack of accurate, i. e. closed-form
analytical solutions for any but the simplest founda-
tion shapes.

Consequently, in standard geotechnical engi-
neering literature and engineering practice combined 
footings are treated on simplified way and designed 
almost solely on the basis of bearing capacity analy-
sis, rather than considering influence of settlements 
and soil structure interaction effects.

As an example, in case of strap footings, in cur-
rent design and construction practice the influence of 
beam-soil interaction is disregarded, and such possi-
bility purposely prevented for compliance with de-
sign assumptions, and such approach is embedded in 
current design codes [14]. 

In common engineering practice this approach 
is not limited to the mentioned case, but it is widely 
used in most cases of combined beams with rigid 
footings on deformable bases.

Flexural rigidity of the structure can have sig-
nificant influence on distribution of load and mo-
ments transmitted to the foundation of the structure, 
and the load redistribution may modify the pattern of 
or mitigate settlement [15].

So for safe and rational application of combined 
footing systems, better understanding their behavior, 
it is necessary to provide estimation of it s load dis-
tribution and resulting contact stresses and settle-
ments [16].

In this paper to a numerical analysis procedure 
of combined footing resting on elastic base has been 
presented, taking into account different characteris-
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tics of individual footing parts (rigid vs. flexible) 
with emphasis on their mutual interaction based on 
continuity conditions at their joints. 

To determine a more realistic contact stresses 
distribution on the contact plane and consequently
the settlements more accurately, the entire footing 
system has to be treated as a unique boundary value 
problem [17]. 

Statement of the problem.
On Fig. 1 the contact problem of combined 

footing consisting of two rigid footings connected by 
elastic flexible foundation beam is presented sche-
matically. It is considered that footing system is rest-
ing on the soil surface modeled as linearly deforma-
ble isotropic elastic half - space or alternatively can 
be treated as elastic layered soil medium of finite 
depth. The analysis of the contact problem here was 
carried with special emphasis on their mutual inter-
action while transferring load to underlying soil.

The contact between the soil and the footing 
system is assumed frictionless. It is assumed that 
bends of flexible beam are small and the Euler-
Bernoulli hypothesis is valid. 
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Figure 1 Schematic representation the strip 
footing system: F external forces, A area, p(x, y) 

contact pressure, G self weight sum forces, P
partial contact sum forces on respective footing 

parts, w and footing centre vertical displacements 
of and footing inclinations.

Although the eccentric application of load in re-
lation to the longitudinal plane of symmetry or/and 
non-uniformity of soil properties can finally result in 
asymmetrical shape of deformed footing system, 
according to chosen theory and for reasons of clari-
ty, this analysis is limited here on the simpler case, 
where it will be assumed that the system is loaded
symmetrically relative to the longitudinal plane of
symmetry of footing system.

The contact problem solution for the strip foot-
ing system is expected to satisfy requirements of 

continuity of displacement and load transfer at their 
joints in conditions of their mutual interaction. 

Since behavior of construction parts has to be 
described by different behaviour concepts (rigid be-
haviour of footings and flexible behaviour of the 
interconnecting foundation beam, in the unique solu-
tion for the combined footing system, both concepts 
should be implemented on the appropriate way, as 
well as their interaction conditions.

Because of complex nature of soils and peculiar 
aspects of their behavior and the complexity of 
boundary conditions involved in combined footing 
design it is necessary to use numerical methods for 
their analysis, because closed form mathematical 
solutions for such complex problems generally does 
not exist. In such cases the system of integral and 
differential equation should be solved numerically. 
In this case the numerical solution was obtained by 
finite difference and boundary element method. Pre-
sented numerical method implies that the solution of 
the problem always exists and therefore numerical 
procedure does not require iterative process.

Contact problem solution for flexible foun-
dation beam.

It is worth to mention that unlike the traditional 
approach where the contact problem of foundation 
beam is treated as the planar one, here the same 
problem, as a part of the more broader one, it 
generally has to be treated as the space problem. 
Although formally identical to planar problem in 
symmetry conditions as in presented case, when
considering the numerical solution of the soil same 
problem in space, one more spatial dimension has to 
be taken into account, when considering the interac-
tion of surrounding footing base and footing struc-
ture.

Solution for the foundation beam (Fig. 2), 
which is here the flexible part of combined footing 
system, is based on the fourth order differential 
equation, according to the Euler-Bernoulli theory 
and has the following form 

4

4
( ) ( )

d w
EI q x p x

dx
, (1)

where EI is flexural stiffness of the beam (con-
stant in considered case), w(x) function of the verti-
cal displacement, p(x) reactive stresses function on 
the contact area, the q(x) is general external load 
function, including the beam self weight, E is elastic 
modulus of beam material, and I is the second mo-
ment of inertia of the beam cross-section taken about 
an axis perpendicular to the loading plane.

The theory is valid if assumed that the beam is 
relatively long and slender, material of the beam is 
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isotropic, deformations of flexible beam remain 
small, there is no friction between beam and base on 
contact plane, beam is loaded in its symmetry plane, 
cross-section is constant along its axis and plane sec-
tions of the beam remain plane.

q(x,y) = q0(x,y)+g(x,y)

z
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Figure 2 Contact problem of the flexible 
foundation beam resting on elastic base

As the contact pressures p nor displacements w
are not known, this leads to the staticly 
undetermined system so the additional assumptions 
are required to overcome this problem. 

So for solving the spatial contact problem, it is 
supposed that vertical structure displacements and 
deformation of the base are equal, which leads to the 
boundary integral equation of the geometrical 
relationship between contact pressures p on the 
foundaton base and corresponding settlements w of 
the structure, wich generally has the folloving form

( , ) ( , ) ( , , , ) ,
A

w x y p x y d d , (2)

where w(x ,y) is the function of unknown foundation 
displacements, A is the contact area of foundation 
resting on elastic base, (x, y, , ) is a Green
function depending on the adopted base model, p(x,
y) is the function of unknown contact pressures to be 
found [5],[6].

As it was already said for the foundaton beam,
w(x) and p(x) are the functions of beam length only, 
providing the beam width is taken into account.

Differential equation is solved by fourfold inte-
gration whereat, it is necessary to specify 
geometrical (displacement w, inclination ) or static 
(bending moment M, shear force T) boundary 
conditions to find specific solution. 

Bending moments, and shear forces in arbitrary 
section plane of the foundation beam are defined as 
second and third order differential equations of the 
displacement function respectively

2

2
( )

d w
M x EI

dx
, (3)

3

3
( )

d w
T x EI

dx
. (4)

Equilibrium of the reaction forces and external 
load presented by equation

( , ) , ( , ) ,
A A

p d d q d d , (5)

is fulfilled on entire footing system domain A, 
but it is generally not fulfilled locally, on individual 
footing system part s subdomains An.

To be solved effectively, the problem has to be 
reduced to a discrete solution of the differential, 
integral and boundary condition equations in 
corresponding nodes.

The combined footing system (symmetrical in 
respect to the longitudinal axis) has been analyzed 
by the finite difference method on the simple or-
thogonal mesh of cells which dimensions in main 
directions X and Y are a and b respectively, and their 
corresponding nodes in the centre of cells, indicated 
by their discrete coordinates and 
respectively (Fig. 3).
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Figure 3 Discretization scheme of the com-
bined footing system

In this analysis the unique discretization 
scheme is introduced for the whole combined foot-
ing system in order to enable defining spatial rela-
tions in numerical expressions over a complete 
boundary of the problem. Discrete solution of differ-
ential equation of the foundation beam in the form of 
the system of finite difference equations can be pre-
sented in matrix form

4

EI

a b
D w , (6)

where D is the matrix of differential operator of 
the foundation beam, w is the beam node displace-
ment vector, is matrix dependent on discretization 
scheme (in case of mesh with central nodes it is uni-
ty matrix), p is the vector of reactive pressures, and f
is the vector which consist of external normal load 
vector q, and the load terms emerging from bounda-
ry condition equations.
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Discrete analogue of spatial contact problem in-
tegral equation (2) is presented in discrete form of 
matrix equation:

w = U×p , (7)

where U is influence (deformability) matrix 
which present the vertical displacements of the con-
tact surface at the arbitrary node (i, j), in the centre 
of corresponding cell on the boundary domain in-
duced by the uniformly distributed unit load over 
another arbitrary cell (k, l) of the same boundary 
domain. Their elements in the case of elastic medi-
um are obtained by the numerical integration of de-
formation resulting from the additional stresses dis-
tribution along the depth at node (i, j) induced by the 
unit load on the mesh cell (k, l), according to chosen 
contact model

Substituting w from equation (7) into equation 
(6) as we consider solving it in terms of contact 
pressure vector p to be the only unknown, the solu-
tion can be presented in the form

A×p = f , (8)

where 

A = D×U + , (9)

so the final solution of the contact problem of flexi-
ble foundation beam can be obtained in the form

1p = A ×f . (10)

When final solution is found, the displacements 
can be obtained using (7) and the distributions of 
bending moments and shear forces along the founda-
tion beam can be found by discrete finite difference 
approximations of equations (3) and (4) respectively 
in matrix form

EI
2

M = D ×w , (11)

EI
3

T = D ×w , (12)

where the D2 and D3 are finite difference ana-
logue of second and third derivation operator respec-
tively.

Unlike a free edge foundation beam, where the 
static boundary conditions would be homogenous 
(M=0, T=0) so specific solution would be rather 
simple to obtain, in the case of beam which is part of 
combined footing real bending moment (M
shear force (T
condition analysis in the sense of introduced load 
variables which include unknown reactive pressures
too (Fig. 4).

Boundary bending moments on beam edge 
section planes (n=1, 2) can be defined as integral 
sum of differential force moments over the area An

of adjacent rigid footing n in respect to correspond-
ing section plane xn

( ) ( , ) ( , ) ,n

An

M x q p d d . (13)

Accordingly, the boundary shear forces on the 
same section planes can be defined as integral sum 
of differential forces over the area of corresponding 
rigid footing

( ) ( , ) ( , ) ,n

An

T x q p d d . (14)

Figure 4 Boundary conditions for flexible 
foundation beam interacting with rigid footing

which can be expressed in the discrete terms 
according to formerly introduced discretization 
scheme 

2( ) 2( )

1 1( ) 1 1( )

( )
J n J nI I

n P kl kl kl kl
k l J n k l J n

M F x ab q x ab p x ,(15)

2( ) 2( )

1 1( ) 1 1( )

( )
J n J nI I

n kl kl
k l J n k l J n

T F ab q ab p , (16)

where Mn and Tn are boundary bending 
moments and shear forces, xP and xkl the vector 
distances of the concentrated forces and mesh node 
forces respectively regarding to the edge section 
plane, J1(n) and J2(n) starting and final node points 
of the n - th footing length.

Introducing equations of the boundary condi-
tions (13), (14) in their discrete form (15), (16) into 
the nodal difference equations

2 1 1 24
4 6 4j j j j j j j

EI
w w w w w q p

a b
,(17)

for two near-boundary beam nodes, which 
include deflection terms of the two extra - boundary 
nodes (Fig. 5) that can be called fictive 
displacements and are defined from before 
mentioned static boundary conditions
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Figure 5 Discretization scheme of the foundation
beam including fictive displacements in extra-

boundary nodes

so the numerical solution of differential equa-
tion for bending of the flexible foundation beam as a 
part of combined footing system is found an can be 
defined by the matrix equation 

4

b b bEI

a b
D ×U + ×p = f , (20)

where Db is beam finite difference operator, U
is the influence matrix, b the discretization scheme 
dependent operator, Rb matrix of boundary condition 
terms which include unknown variables, and f the 
vector of external load and boundary condition load 
terms.

Solution of the contact problem for the rigid 
footing.

As the footings are considered absolutely rigid, 
there is no deformation of its shape, so contact sur-
face remains plane exhibiting only kinematical 
movement which can be described by its inclination 
and displacement of the arbitrary point on the con-
tact plane surface [1] and expressed in the form of 
integral equation

( , ) ( , , , ) , ( )

( ),

C x C

A

y C

p x y d d w x X

y Y

(21)

where A is the contact area, wC is vertical set-
tlement of the footing centre, x and x are footing 
inclinations relative to axes X and Y respectively.

So, to solve the contact problem of rigid footing 
it is necessary to find a distribution of contact pres-
sures and three unknown parameters of displacement 
and inclinations of rigid footing contact plane (wC, 

x, y).
To find the solution, we need three more equi-

librium equations:

( , ) ,
A

p d d F , (22)

( , ) ,
A

p d d F Xc My , (23)

( , ) ,
A

p d d F Yc Mx . (24)

The solution of the problem can be defined in 
discrete form

, , , ,
1 1

( ) ( ) 0,

, 1,..., , , 1,..., ).

I J

k l i j k l x C y C C
k l

p u x X y Y w

i k I j l J

(25) 

As the spatial position of the contact plane can 
be determined by the displacement of arbitrary point 
n of its surface and its inclination, it is practical to 
define contact problem of rigid footing in terms of 
existing variables i.e. node point displacements only, 
so the solution (25) can be presented in a matrix 
form too, similar to finite difference operator.

The discrete solution of the problem can be de-
fined as system of linear equations of kinematical 
conditions providing link between node displace-
ments in respect to the longitudinal and transversal 
direction. 

As the footing system is loaded centrically re-
garding to its longitudinal axis (X), all of the dis-
placements in the normal direction to the longitudi-
nal axis are equal i.e. y=0 so the equation

1, 2, ,.....   =j j I jw w w , (26)

is valid for all node columns j= -1 for the 
first footing (Fig. 6), and also corresponding 
j= on the second footing according to dis-
cretization scheme (Fig. 3), which leads to first set 
of kinematical conditions in the form

1, 2, 2, 3, 1, ,.....  0; 0; 0j j j j I j I jw w w w w w . (27)

1 2 i I...
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w11=w12=...=w1i...=w1I
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Figure 6 Kinematical conditions for the rigid 
footing in the normal direction to the longitudinal 

axis

Combining this set of kinematical condition 
equations with the boundary integral equation (2) in 
their discrete matrix form (7) as in (25) we get the 
set of kinematical equations which can be expressed 
in matrix form

f f
1K ×U×p = 0 . (28)

Kinematical conditions in the direction of lon-
gitudinal axis can be expressed as the constant incli-
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nation of footing slope x which has to be defined 
only in central node row Iax, as it is the same for all 
other rows (Fig. 7) 

,2 ,1 ,3 ,2

, 1 , 1 1

....

,

Iax Iax Iax Iax

Iax J Iax J

x

w w w w

a a

w w

a

(29)

which leads to second set of kinematical condi-
tion equations in the form

,1 ,2 ,3

, 1 , , 1

, 1 2 , 1 1 , 1

2 0, ...

2 0, ...

2 0.

Iax Iax Iax

Iax j Iax j Iax j

Iax J Iax J Iax j

w w w

w w w

w w w

(30)

Combining these equations with (7) we get the 
set of kinematical equations

2
f fK ×U×p = 0 . (31)

Figure 7 Boundary conditions on the connection of 
the rigid footing with the foundation beam

Equations (29) and (30) are formally stated in 
the notation for the first footing but those for the 
second one are principally identical. By equations 
(30), (31) contact problem of rigid footing is de-
fined. 

Boundary plane conditions and solution for 
combined footing system.

Regarding to fixed static connection of the foot-
ing with the foundation beam, there are geometric 
boundary conditions of equal displacement and 
equal inclination which must be satisfied on their 
connection which can be defined as (Fig. 7)

0f b
S Sw w , (32)

0f b
S S , (33)

where wS is the displacement in the section 
plane. Index b and f indicate quantities regarding to 
beam and footing respectively.

As the edge section is not in the node in the

case of mesh with central node points, the boundary 
displacement is approximated in terms of beam dis-
placement variables

, 1 1 1
b f f
Is J J Jw w a . (34)

The condition of equal inclination (33) is de-
fined by combining central finite difference approx-
imation of the footing slope inclination 

1 1 1

1

f f
J Jf

J

w wdw

dx a
, (35)

and boundary finite difference approximation of 
foundation beam slope inclination

, 1 , 1 1 , 1 2 , 1 3
, 1

11 18 9 2

6

b b b b
b Is J Is J Is J Is J
Is J

w w w wdw

dx a
,  (36) 

which yields

, 1 1 , 1 , 1 1 , 1 2 , 1 36 17 18 9 2 0Is J Is J Is J Is J Is Jw w w w w , (37) 

while the condition of the equal displacement 
(32) is already fulfilled by the equation (33).

Combining equation (37) with (7) we get two 
kinematical equations which can be noted as

3
f fK ×U×p = 0 . (38)

Equations (28), (33) and (38) define complete 
solution for rigid footing parts of combined footing 
system

f fK ×U×p = 0 , (39)

where fK is complete kinematical operator 

matrix of the rigid footing parts of combined footing 

system and 
fp is the vector of contact stresses on 

rigid footings contact plane.
Finally, the unique solution for the strip footing 

system is defined by combining the solutions for his 
flexible (20) and rigid (39) parts and can be de-
scribed by the matrix equation

4

b f b bEI

a b
D + K ×U + ×p = f . (40)

Schematic graphical presentation of the sparse 
matrix system components is shown on Fig. 8.
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Figure 8 Sparse matrix system components of finite difference solution for strip footing system analysis

Soil model.
Solution of the contact problem on elastic ho-

mogenous isotropic half-space is based on well 
known Bousinesq s solution for additional stresses 
due to concentrated load on its surface [18]. 

The relationship (2) between uniformly distrib-
uted contact pressure p on the foundation base and 
corresponding settlement w on the corner point 
of the rectangular area of dimensions (a,b) resting on 
the elastic half-space is obtained by double integra-
tion of differential deformation caused by additional 
stresses over the area according to Steinbrenner s 
solution [9].

2 2 2
0

2 2

1
ln ln

o

a a b a
w p a b

E ba b b
.(41)

Settlement of any node (i, j) is evaluated by 
numerical integration of partial settlements caused 
by any single uniformly loaded rectangular mesh 
element area (k, l) of foundation base boundary by 
superposition of solution (41) for all divided rectan-
gular element area parts with common corner in it s 
characteristic point.

As an alternative to the elastic homogenous iso-
tropic half - space model, the quasi-linear elastic 
layered soil model is also adopted to enable using of 
standard widely used and experimentally determined 
soil properties as the confined compressibility 
modulus based on Edometer test data. Total settle-
ment of the compressible soil layer is defined by

( )0

H

z

V z

dz
w

M
, (42)

where H is the soil layer thickness, MV(z) is con-
fined compressibility soil modulus on corresponding 
depth z and z is additional stress function. 

For actual calculations this integral equation (2) 
solution is evaluated numerically in discretized form 
over the depth of soil profile which is divided in 
many (N) thin sub-layers of thickness z(n) approx-
imated by constant soil compression modulus MV(n)

and stress z(n) which is calculated in the centre of 
sub-layer depth

1

( )
,   n = 1...N

N
z n

V n

z n
w

M
. (43)

Additional stress function is defined according 
to the Steinbrenner s solution for stress on depth z
below the edge of the rectangular area of dimensions 
(a, b)

2 2 2

2 2 2 2 2 2 2 2 2 2

2

2
z

a b z a b zq a b
arctg

a z b z a b z z a b z
,(44) 

which is evaluated on any point of rectangular
mesh sub domain using the superposition principle
as described before.
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Numerical examples.
The numerical algorithm based on above de-

scribed procedure for combined footing system 
analysis was written and implemented in Matlab 
computing environment. An elastic linearly de-
formed half-space and quasi-linear elastic layered 
model of horizontally layered soil are implemented 
in the algorithm based on finite difference method.

Two simple examples of symmetrically loaded 
combined footing system are analyzed to demon-
strate the adopted procedure.

The footing system domain was described by 
uniform rectangular mesh of 20 5 cells which di-
mensions in main directions X and Y are a=b=0.5m.

Basic footing system of overall length of 10.0 
m consists of two rigid footings of dimensions 
(w l h) 2.5 2.5 0.6 m, connected with the founda-
tion beam of dimensions 0.5 5.0 0.6 m. Footing 
system model mesh consist of 60 cells with node 
points in their center, so the total number of un-
knowns in the problem is 60.

Graphical presentation of the combined footing 
system model with its dimensions over the corre-
sponding contact area mesh is given on Fig. 9.

Figure 9 The model of the combined footing 
system

Footing system is loaded by external concen-
trated forces P1=P2=600 kN in the centre of each 
footing and self weigh 225 kN, so the total load sum 
is 1425 kN. Concrete Young modulus is E=3 104

MPa and Poisson ratio =0.17.
For a given load combined footing load contact 

pressure distribution and the node displacements are 
calculated. Bending moments and shear forces in 
node points and characteristic sections are calculated 
by integration of node forces.

The numerical calculation data of contact pres-
sure distribution and node displacements are given 
for a quarter of footing system area, and bending 
moments and shear forces in longitudinal axis for 
half footing system length, due to symmetry of load 
distribution.

Calculation data for combined footing sys-
tem on elastic half-space.

For this calculation the elastic half-space soil 
model was characterized by Young modulus E=10 
MPa and Poisson ratio =0.3. 

The numerical calculation data are presented in 
Table 1. Calculation results for contact pressure dis-
tribution and node displacements are shown graph-
ically over footing system domain on the figures Fig.
10 and Fig. 11. Bending moments and shear forces 
in footing system longitudinal axis are shown on the 
Fig. 12.

Figure 10 Combined footing contact pressure 
distribution for the elastic half-space soil model

Figure 11 Combined footing node displace-
ments for the elastic half-space soil model

Figure 12 Combined footing bending mo-
ments and shear forces distribution for the elastic 

half-space soil model



2(7) 2015 	 	
43

Table 1 Numerical calculation data for combined footing on the elastic half-space

Calculation data for the combined footing sys-
tem on the layered quasi-linear elastic soil model.

Horizontally layered quasi-linear elastic soil 
model consists of 4 layers with parameters specified 
in the Table 2.

Table 2 Layered quasi-linear elastic soil model 
properties 

Layer Layer thick-
ness [m]

Compressibility 
modulus [kN/m2]

1 2 10000

2 2 15000

3 3 20000

4 3 30000

The numerical calculation data are presented in 
table 3. Calculation results for contact pressure dis-
tribution and node displacements are shown graph-
ically over footing system domain on the figures Fig 
13 and Fig 14. Bending moments and shear forces in 
longitudinal footing system axis are shown on the 
Fig 15.

Figure 13 Combined footing contact pressure 
distribution for layered quasi-linear elastic soil mod-

el

Figure 14 Combined footing node displace-
ments for layered quasi-linear elastic soil model

Node 
(i, j)

cont. pressure
p [kN/m2]

displacement
w [m]

length x [m]
Bending mo-

ment
M [kNm]

Shear force
N [kN]

1,1 174.375 0.024597 0 0 0
1,2 111.9333 0.024346 0.25 9.7731 78.1848
1,3 103.4954 0.024096 0.75 83.2366 196.7842
1,4 100.1282 0.023846 1.25 205.8489 273.4578
1,5 130.6441 0.023596 1.25 205.8489 -326.5422

2,1 118.3422 0.024597 1.75 55.9658 -255.6974
2,2 58.8469 0.024346 2.25 -52.8154 -172.3293
2,3 53.4642 0.024096 2.5 -89.7999 -123.547
2,4 51.1634 0.023846 2.75 -119.4714 -113.8247
2,5 73.2836 0.023596 3.25 -171.2148 -91.9179
3,1 115.0437 0.024597 3.75 -210.9736 -66.6856
3,2 56.7569 0.024346 4.25 -237.7533 -40.2766
3,3 51.1526 0.024096 4.75 -251.199 -13.4577
3,4 49.1034 0.023846 5 -252.8812 -6.35E-08

3,5 57.4027 0.023596
3,6 92.7779 0.023346 Total load 1425 kN

3,7 112.4768 0.023093 Beam load Sum 37.500 kN

3,8 119.3815 0.02286 Beam contact pressures Sum 284.594 kN

3,9 121.8903 0.022684
Beam load vs. contact pressures   

difference
247.094 kN

3,10 122.6614 0.02259
Relative load transfer rigid foot. to 

beam
17.809 %
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Table 3 Numerical calculation data for combined footing on the layered quasi-linear elastic soil model

Node 
(i, j)

cont. pressure
p [kN/m2]

displacement
w [m]

length x [m]
Bending moment

M [kNm]
Shear force

N [kN]
1,1 197.139 0.03188 0 0.000 0.000
1,2 104.493 0.03141 0.25 11.497 91.972
1,3 96.624 0.03094 0.75 95.488 212.065
1,4 84.640 0.03048 1.25 219.389 269.481
1,5 107.079 0.03001 1.25 219.389 -330.519
2,1 135.362 0.03188 1.75 64.783 -274.590
2,2 25.294 0.03141 2.25 -56.897 -202.935
2,3 32.381 0.03094 2.5 -102.003 -157.914
2,4 29.649 0.03048 2.75 -140.236 -147.951
2,5 60.898 0.03001 3.25 -208.665 -123.504
3,1 135.362 0.03188 3.75 -262.830 -91.781
3,2 145.777 0.03188 4.25 -299.954 -56.122
3,3 40.390 0.03141 4.75 -318.750 -18.850

3,4 51.352 0.03094 5 -321.106 -1.035E-08

3,5 59.495 0.03048
3,6 99.214 0.03001 Total load 1425 kN
3,7 94.701 0.02954 Beam load Sum 37.500 kN
3,8 130.879 0.02908 Beam contact pressures Sum 353.327 kN

3,9 152.901 0.02868
Beam load vs. contact        
pressures difference

315.827 kN

3,10 162.377 0.02838
Relative load transfer rigid 

foot. to beam
22.762 %

Figure 15 Combined footing bending mo-
ments and shear forces distribution for layered qua-

si-linear elastic soil model

To evaluate influence of footing system rigidity 
on system parts mutual interaction effects, the para-
metric analysis was conducted varying the beam 
height. Numerical calculation data of basic footing 
design parameters for different beam heights are 
presented in table 4. Graphical presentation of para-
metric analysis results are shown on the figures 
Fig. 16 and Fig. 17.

The contact pressure distribution differences 
between two soil models are generally moderate and 
are the most visible on the flexible foundation beam 
where maximum differences for presented examples 
are of the order of 25 %.

The parametric analysis of footing system con-
ducted by varying the beam height in the larger
range of beam thickness, the load transfer from the 
rigid footings to the foundation beam has been 
changed less than 10%, which shows that the influ-
ence of foundation beam rigidity has does not have 
crucial influence on the foundation interaction ef-
fects.

As can be seen from analysis data the chosen 
soil model has more than twice as much influence on 
obtained foundation interaction effects than founda-
tion beam stiffness which in the case of used soil 
models amounts up to 20 %.

Differential settlements are more dependent on 
foundation beam stiffness and maximum differential 
node settlements over the contact plane for analyzed 
examples varies in the range of about 10% to 20% of 
total displacement.

Bending moments and shear forces differences 
distribution also seem to depend more on used soil 
model than on the foundation beam rigidity
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Table 4 Comparison of calculation data for different beam height
Beam 
height 

[m]

Max. beam cen-
tre bend. moment 

[kNm]

Max. beam 
edge shear 
force [kN]

Max. differential node 
displ. [mm, (%)]

Load transfer to 
beam [kN, (%)]

10.3 -201.9 312.1 5.15,   (20.45) 225.4,   (16.25)
10.4 -221.5 316.6 3.89,   (15.54) 234.6,   (16.91)
10.5 -239.5 322.9 2.83,   (11.43) 242.1,   (17.45)
10.6 -252.9 326.5 2.01,   (8.159) 247.1,   (17.81)
2 0.6 -321.1 330.5 3.50,    (12.33) 315.8,   (22.76)

1 elastic linear half-space model;    2 quasi-linear elastic layered soil medium

Figure 16 Comparison of contact pressures 
and displacements for combined footing on 

elastic half-space depending on different beam 
height

Figure 17 Comparison of bending moments 
and shear forces for combined footing on elastic half-

space depending on different beam height

Conclusions
In this work the procedure for the combined 

footing analysis using the finite difference method is 
presented. 

Analysis results show that more realistic con-
tact pressure distribution can be determined by tak-
ing into account mutual interaction of the rigid and 
flexible parts of combined footing system. 

From presented results it is shown that interac-
tion can cause significant amount of load to be redis-
tributed from rigid footings to the foundation beam 
so the bending moments and shear forces distribu-
tions are affected by the interaction too.

It is quite interesting that the foundation beam 
rigidity change in the rather large scale does not 
have so significant influence on the interaction as it 
could be supposed. From conducted parametric 
analysis can be concluded that the analysis results 
more depend on implemented soil model. 

Obtained results indicate that mutual interaction 
of the rigid and flexible parts of combined footing
should be taken into consideration when calculating 
combined foundation systems in shallow foundation 
design to account for mutual interaction effects of 
the footing system parts to determine bending mo-
ments and shear forces accurately. In the conditions 
of inaccurately evaluated bending moments and 
shear forces construction can be exposed to the ex-

cess tensional and shear stresses mo, which can lead 
to the crack occurrence.

Although in the presented analysis relatively 
simple soil models are used it can be further im-
proved by implementing more refined soil models, 
to enable taking into account more complex soil 
properties.

The conducted analysis demonstrate that finite 
difference method can be sufficiently well be 
adapted for meeting the boundary conditions of 
combined foundation system. It is also shown that
developed algorithm is applicable for analysis of the 
combined shallow foundation system in order to de-
termine contact stresses and displacements distribu-
tions which is necessary for foundation design. Ac-
cordingly, the other parameters for foundation de-
sign as bending moments and shear forces can be 
determined more accurately.
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