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CONTACT PROBLEM OF COMBINED FOOTING RESTING ON ELASTIC BASE

The contact problem of combined footing resting on elastic half space, or stratified elastic base has
been analyzed. Unlike simplified common assumptions and design methods of such foundation, here the
analysis was carried over a two rigid footings connected by elastic flexible foundation beam, taking into ac-
count different characteristics of individual footing parts (vigid vs. flexible) and continuity conditions at their
Jjoints, with emphasis on their mutual interaction related to underlying soil load transfer. The numerical
analysis has been performed by combined finite difference and boundary element method on the identical

quadrilateral mesh.

Keywords: combined footing, interaction, elastic half space, layered elastic medium, FEM, BEM, set-

tlemet.

Introduction.

Combined footings are common form of shal-
low foundations. A system of two rigid footings
connected by a foundation beam are often referred
as strap footing, but this term implies a special case
of combined footing loading, which is exclusively
used for compensation of highly eccentric concen-
trated loads [1], [2]. However, there are many other
situations where the combined footings consisting of
foundation beams and rigid footings are applicable,
and actually used, and they are subject of this analy-
sis in some broader sense.

Traditionally the use of the of shallow founda-
tions is principally restricted to the relatively light
structures due to limitations that are mainly related
to two main reasons: the first being restrictions re-
lated to the shallow soil properties, their intrinsic
non - homogenous nature and complex stress - strain
behavior, and the second lack of correct assessment
of foundation structure alone and soil - structure in-
teraction effects, which makes predictions of real
structure behavior unreliable and consequently can
result in their inadequate design [3].

There are many publications considering vari-
ous analytical and numerical methods and solutions
for contact problems of simple-shaped foundations
like flexible foundation beams, rigid or flexible
plates of basic shapes. Some of them are reviewed
and discussed in [4], [7] monographs [8], [9] and
more related to the presented problem [10], [12] as
well as their experimental verification [13]. But
there is a lack of those deliberated to the more spe-
cific ones such as combined foundations, due to in-

herent complexity of any thorough analysis of such
problems due to lack of accurate, i. e. closed-form
analytical solutions for any but the simplest founda-
tion shapes.

Consequently, in standard geotechnical engi-
neering literature and engineering practice combined
footings are treated on simplified way and designed
almost solely on the basis of bearing capacity analy-
sis, rather than considering influence of settlements
and soil structure interaction effects.

As an example, in case of strap footings, in cur-
rent design and construction practice the influence of
beam-soil interaction is disregarded, and such possi-
bility purposely prevented for compliance with de-
sign assumptions, and such approach is embedded in
current design codes [14].

In common engineering practice this approach
is not limited to the mentioned case, but it is widely
used in most cases of combined beams with rigid
footings on deformable bases.

Flexural rigidity of the structure can have sig-
nificant influence on distribution of load and mo-
ments transmitted to the foundation of the structure,
and the load redistribution may modify the pattern of
or mitigate settlement [15].

So for safe and rational application of combined
footing systems, better understanding their behavior,
it is necessary to provide estimation of it’s load dis-
tribution and resulting contact stresses and settle-
ments [16].

In this paper to a numerical analysis procedure
of combined footing resting on elastic base has been
presented, taking into account different characteris-
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tics of individual footing parts (rigid vs. flexible)
with emphasis on their mutual interaction based on
continuity conditions at their joints.

To determine a more realistic contact stresses
distribution on the contact plane and consequently
the settlements more accurately, the entire footing
system has to be treated as a unique boundary value
problem [17].

Statement of the problem.

On Fig. 1 the contact problem of combined
footing consisting of two rigid footings connected by
elastic flexible foundation beam is presented sche-
matically. It is considered that footing system is rest-
ing on the soil surface modeled as linearly deforma-
ble isotropic elastic half - space or alternatively can
be treated as elastic layered soil medium of finite
depth. The analysis of the contact problem here was
carried with special emphasis on their mutual inter-
action while transferring load to underlying soil.

The contact between the soil and the footing
system is assumed frictionless. It is assumed that
bends of flexible beam are small and the Euler-
Bernoulli hypothesis is valid.
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Figure 1 — Schematic representation the strip
footing system: /" — external forces, 4 — area, p(x, y)
— contact pressure, G — self weight sum forces, P —

partial contact sum forces on respective footing
parts, w and ¢ footing centre vertical displacements
of and footing inclinations.
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Although the eccentric application of load in re-
lation to the longitudinal plane of symmetry or/and
non-uniformity of soil properties can finally result in
asymmetrical shape of deformed footing system,
according to chosen theory and for reasons of clari-
ty, this analysis is limited here on the simpler case,
where it will be assumed that the system is loaded
symmetrically relative to the longitudinal plane of
symmetry of footing system.

The contact problem solution for the strip foot-
ing system is expected to satisfy requirements of

continuity of displacement and load transfer at their
joints in conditions of their mutual interaction.

Since behavior of construction parts has to be
described by different behaviour concepts (rigid be-
haviour of footings and flexible behaviour of the
interconnecting foundation beam, in the unique solu-
tion for the combined footing system, both concepts
should be implemented on the appropriate way, as
well as their interaction conditions.

Because of complex nature of soils and peculiar
aspects of their behavior and the complexity of
boundary conditions involved in combined footing
design it is necessary to use numerical methods for
their analysis, because closed form mathematical
solutions for such complex problems generally does
not exist. In such cases the system of integral and
differential equation should be solved numerically.
In this case the numerical solution was obtained by
finite difference and boundary element method. Pre-
sented numerical method implies that the solution of
the problem always exists and therefore numerical
procedure does not require iterative process.

Contact problem solution for flexible foun-
dation beam.

It is worth to mention that unlike the traditional
approach where the contact problem of foundation
beam is treated as the planar one, here the same
problem, as a part of the more broader one, it
generally has to be treated as the space problem.
Although formally identical to planar problem in
symmetry conditions as in presented case, when
considering the numerical solution of the soil same
problem in space, one more spatial dimension has to
be taken into account, when considering the interac-
tion of surrounding footing base and footing struc-
ture.

Solution for the foundation beam (Fig. 2),
which is here the flexible part of combined footing
system, is based on the fourth order differential
equation, according to the Euler-Bernoulli theory
and has the following form

4

d'w
EI 0 =q(x)- p(x),

(1

where EI is flexural stiffness of the beam (con-
stant in considered case), w(x) function of the verti-
cal displacement, p(x) reactive stresses function on
the contact area, the g(x) is general external load
function, including the beam self weight, £ is elastic
modulus of beam material, and 7 is the second mo-
ment of inertia of the beam cross-section taken about
an axis perpendicular to the loading plane.

The theory is valid if assumed that the beam is
relatively long and slender, material of the beam is
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isotropic, deformations of flexible beam remain
small, there is no friction between beam and base on
contact plane, beam is loaded in its symmetry plane,
cross-section is constant along its axis and plane sec-
tions of the beam remain plane.

aley) = 4,53 8xy)

il LU

b
LTI 3
b

Figure 2 — Contact problem of the flexible
foundation beam resting on elastic base

As the contact pressures p nor displacements w
are not known, this leads to the staticly
undetermined system so the additional assumptions
are required to overcome this problem.

So for solving the spatial contact problem, it is
supposed that vertical structure displacements and
deformation of the base are equal, which leads to the
boundary integral equation of the geometrical
relationship between contact pressures p on the
foundaton base and corresponding settlements w of
the structure, wich generally has the folloving form

w(x,y) = [[ p&matx, y.&mdé,dn, (2)

where w(x ,y) is the function of unknown foundation
displacements, 4 is the contact area of foundation
resting on elastic base, ok, y, & 1) is a Green
function depending on the adopted base model, p(x,
y) is the function of unknown contact pressures to be
found [5],[6].

As it was already said for the foundaton beam,
w(x) and p(x) are the functions of beam length only,
providing the beam width is taken into account.

Differential equation is solved by fourfold inte-
gration whereat, it is necessary to specify
geometrical (displacement w, inclination @) or static
(bending moment M, shear force 7) boundary
conditions to find specific solution.

Bending moments, and shear forces in arbitrary
section plane of the foundation beam are defined as
second and third order differential equations of the
displacement function respectively

d*w

dx*’ ®)

M(x)=-EI

d3
T(x)=—EI d—x”f _ @)

Equilibrium of the reaction forces and external
load presented by equation

| p(&.mas.dn=[[q(&.mas.dn. )
A A

is fulfilled on entire footing system domain A,
but it is generally not fulfilled locally, on individual
footing system part’s subdomains 4,,.

To be solved effectively, the problem has to be
reduced to a discrete solution of the differential,
integral and boundary condition equations in
corresponding nodes.

The combined footing system (symmetrical in
respect to the longitudinal axis) has been analyzed
by the finite difference method on the simple or-
thogonal mesh of cells which dimensions in main
directions X and Y are a and b respectively, and their
corresponding nodes in the centre of cells, indicated
by their discrete coordinates j=1,...J and i=1,....]
respectively (Fig. 3).
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Figure 3 — Discretization scheme of the com-
bined footing system

In this analysis the unique discretization
scheme is introduced for the whole combined foot-
ing system in order to enable defining spatial rela-
tions in numerical expressions over a complete
boundary of the problem. Discrete solution of differ-
ential equation of the foundation beam in the form of
the system of finite difference equations can be pre-
sented in matrix form

g~wa+k><p:f, (6)
ab

where D is the matrix of differential operator of
the foundation beam, w is the beam node displace-
ment vector, A is matrix dependent on discretization
scheme (in case of mesh with central nodes it is uni-
ty matrix), p is the vector of reactive pressures, and f
is the vector which consist of external normal load
vector (, and the load terms emerging from bounda-
ry condition equations.
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Discrete analogue of spatial contact problem in-
tegral equation (2) is presented in discrete form of
matrix equation:

w=Uxp, ™)

where U is influence (deformability) matrix
which present the vertical displacements of the con-
tact surface at the arbitrary node (i, j), in the centre
of corresponding cell on the boundary domain in-
duced by the uniformly distributed unit load over
another arbitrary cell (k, /) of the same boundary
domain. Their elements in the case of elastic medi-
um are obtained by the numerical integration of de-
formation resulting from the additional stresses dis-
tribution along the depth at node (i, j) induced by the
unit load on the mesh cell (%, /), according to chosen
contact model

Substituting w from equation (7) into equation
(6) as we consider solving it in terms of contact
pressure vector p to be the only unknown, the solu-
tion can be presented in the form

Axp=f, ®)
where

A=DxU+A, 9)

so the final solution of the contact problem of flexi-
ble foundation beam can be obtained in the form
p=A"'xf. (10)

When final solution is found, the displacements
can be obtained using (7) and the distributions of
bending moments and shear forces along the founda-
tion beam can be found by discrete finite difference
approximations of equations (3) and (4) respectively
in matrix form

M=-EI-D,xw, (11)
T=-EI-D,xw, (12)

where the D, and Dj are finite difference ana-
logue of second and third derivation operator respec-
tively.

Unlike a free edge foundation beam, where the
static boundary conditions would be homogenous
(M=0, T=0) so specific solution would be rather
simple to obtain, in the case of beam which is part of
combined footing real bending moment (M#0), and
shear force (7#0) have to be defined in boundary
condition analysis in the sense of introduced load
variables which include unknown reactive pressures
too (Fig. 4).

Boundary bending moments on beam edge
section planes (n=1, 2) can be defined as integral
sum of differential force moments over the area An

of adjacent rigid footing » in respect to correspond-
ing section plane x,

M(x,) = [ a(&n) - p(&,m)Edé,dn.(13)

Accordingly, the boundary shear forces on the
same section planes can be defined as integral sum
of differential forces over the area of corresponding
rigid footing

T(x,) = [ q(&m)—p(Emdé,dn. (14)

AN

Figure 4 — Boundary conditions for flexible
foundation beam interacting with rigid footing

which can be expressed in the discrete terms
according to formerly introduced discretization
scheme

1 J2n) [ J2n)

M,=F- xp"'abz z (%1 xu) abz z (P %) (15)

k=1 1=J1(n) k=1 I=J1(n)
I J2(n) I J2(n)
T, =F+aby > (9)y—ab), D py. (16)
k=1 I=J1(n) k=1 I=J1(n)
where M, and 7, are boundary bending

moments and shear forces, xp and xy the vector
distances of the concentrated forces and mesh node
forces respectively regarding to the edge section
plane, Ji(n) and J2(n) starting and final node points
of the n - th footing length.

Introducing equations of the boundary condi-
tions (13), (14) in their discrete form (15), (16) into
the nodal difference equations

EI(

e —4w,  +6w, —4w +W]+2)=

Jj+l

q;=p;(17)

for two near-boundary beam nodes, which
include deflection terms of the two extra - boundary
nodes (Fig. 5) that can be called fictive
displacements and are defined from before
mentioned static boundary conditions

2

a
W :—E(MIT +M, )+2wJ1 — W0 (18)

24’
Wi = E(TlT +1; )"’ 2Wy = 2w+ Wy (19)

36ipnux naykosux npayo OIJATPA Ne 2(7) 2015



Opechbka epkaBHA aKaaeMist TEXHIYHOTO PETYJIFOBAHHS Ta SIKOCTi

J1-2
+

J1+1
T
I

Wi+

12-1
T

Wi

| i) |Jz;1
b

2+2

J1-1
s

J1
+

ana

Vi

w.

w n n 2+
W -1 J
n-2

Figure 5 — Discretization scheme of the foundation
beam including fictive displacements in extra-
boundary nodes

so the numerical solution of differential equa-
tion for bending of the flexible foundation beam as a
part of combined footing system is found an can be
defined by the matrix equation

(EI

a4

where D’ is beam finite difference operator, U
is the influence matrix, A" the discretization scheme
dependent operator, R” matrix of boundary condition
terms which include unknown variables, and f the
vector of external load and boundary condition load
terms.

Solution of the contact problem for the rigid
footing.

As the footings are considered absolutely rigid,
there is no deformation of its shape, so contact sur-
face remains plane exhibiting only kinematical
movement which can be described by its inclination
and displacement of the arbitrary point on the con-
tact plane surface [1] and expressed in the form of
integral equation

f, (20)

b

D”><U+)J’+Rb)><p

[ pEmote,y.&mdé,dn=w.+o,(x-X)+
Y (21)
+¢y (y -Y c)a

where A is the contact area, wc is vertical set-
tlement of the footing centre, ¢, and ¢, are footing
inclinations relative to axes X and Y respectively.

So, to solve the contact problem of rigid footing
it is necessary to find a distribution of contact pres-
sures and three unknown parameters of displacement
and inclinations of rigid footing contact plane (wc,
Po By)-

To find the solution, we need three more equi-
librium equations:

[pEmac.an=F, (2

[ p(&ndé,dn=F Xe+My, (23)

jp(f,n)dg‘,dn=F-Yc+Mx. (24)

The solution of the problem can be defined in
discrete form

[
Zzpk,l Uk —gox(x—XC)—(oy(y—YC)+wC =0, (25)

k=1 1=1
k=11, j,l=1,..J).

As the spatial position of the contact plane can
be determined by the displacement of arbitrary point
n of its surface and its inclination, it is practical to
define contact problem of rigid footing in terms of
existing variables i.e. node point displacements only,
so the solution (25) can be presented in a matrix
form too, similar to finite difference operator.

The discrete solution of the problem can be de-
fined as system of linear equations of kinematical
conditions providing link between node displace-
ments in respect to the longitudinal and transversal
direction.

As the footing system is loaded centrically re-
garding to its longitudinal axis (X), all of the dis-
placements in the normal direction to the longitudi-
nal axis are equal i.e. ¢,=0 so the equation

W, =W, = (26)

is valid for all node columns j=1,...,JI-1 for the
first footing (Fig. 6), and also corresponding
j=J2+1,...,J on the second footing according to dis-
cretization scheme (Fig. 3), which leads to first set
of kinematical conditions in the form

»

L - =
>
/lélz : IWn:le:'“:wli'“:Wn

I 2.
vZ

Figure 6 — Kinematical conditions for the rigid
footing in the normal direction to the longitudinal
axis

Combining this set of kinematical condition
equations with the boundary integral equation (2) in
their discrete matrix form (7) as in (25) we get the
set of kinematical equations which can be expressed
in matrix form

K/ xUxp’ =0. (28)
Kinematical conditions in the direction of lon-
gitudinal axis can be expressed as the constant incli-
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nation of footing slope ¢, which has to be defined
only in central node row /ax, as it is the same for all
other rows (Fig. 7)

W2 "Wt Wiaes3 ™ Wi
a a
(29)
w, -W
_ lax,J1 lax,J1-1 _
- Y— = q)x,
a

which leads to second set of kinematical condi-
tion equations in the form

Wi T 2W1ax,2 ~ Wiaxs = 0, ...

Wi i+ 2W1ax,_/ — Wi a1 = o, ... (30)

W12 T 2Wie 120 = Wige ju1 = 0.

Combining these equations with (7) we get the
set of kinematical equations

f [ =
K, xUxp’ =0. 3D
12 - -1 311
o [pe=——— fpeb s e s e et == Int=—— fom <
wolwh " P Lo L g
wl} wzl.. wﬂ... —_n_lJ_ Lﬁ%ﬁ?ﬁl
B S

Figure 7 — Boundary conditions on the connection of
the rigid footing with the foundation beam

Equations (29) and (30) are formally stated in
the notation for the first footing but those for the
second one are principally identical. By equations
(30), (31) contact problem of rigid footing is de-
fined.

Boundary plane conditions and solution for
combined footing system.

Regarding to fixed static connection of the foot-
ing with the foundation beam, there are geometric
boundary conditions of equal displacement and
equal inclination which must be satisfied on their
connection which can be defined as (Fig. 7)

wi=wl=#0, (32)

05 =5 %0, (33)
where wg is the displacement in the section
plane. Index b and f indicate quantities regarding to
beam and footing respectively.
As the edge section is not in the node in the

case of mesh with central node points, the boundary
displacement is approximated in terms of beam dis-
placement variables

b
Wi = W.{l +¢f] a. (34)
The condition of equal inclination (33) is de-
fined by combining central finite difference approx-

imation of the footing slope inclination

f f
o d wh o —wl
w‘{l: Wz( J Jll)’ (35)
dx

and boundary finite difference approximation of
foundation beam slope inclination

b b b b
po_dw =Hwy + 18wy =9 10 20 1 6
(ols,.ll -~ 5 (3 )
dx 6a

which yields

_6W1s,11-1 + 17W1s,11 - 18W1s,‘/1+1 + 9W1s,J1+2 - 2W1s,J1+3 =0 , (37)

while the condition of the equal displacement
(32) is already fulfilled by the equation (33).

Combining equation (37) with (7) we get two
kinematical equations which can be noted as

K/ xUxp’ =0. (38)

Equations (28), (33) and (38) define complete
solution for rigid footing parts of combined footing
system

K’ xUxp’ =0, (39)

where K’ is complete kinematical operator
matrix of the rigid footing parts of combined footing
system and pf is the vector of contact stresses on

rigid footings contact plane.

Finally, the unique solution for the strip footing
system is defined by combining the solutions for his
flexible (20) and rigid (39) parts and can be de-
scribed by the matrix equation

KETIb-Db+Kfj><U+kb+Rb}<p=f. (40)
a

Schematic graphical presentation of the sparse
matrix system components is shown on Fig. 8.
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Figure 8 — Sparse matrix system components of finite difference solution for strip footing system analysis

Soil model.

Solution of the contact problem on elastic ho-
mogenous isotropic half-space is based on well
known Bousinesq’s solution for additional stresses
due to concentrated load on its surface [18].

The relationship (2) between uniformly distrib-
uted contact pressure p on the foundation base and
corresponding settlement w on the corner point
of the rectangular area of dimensions (g, b) resting on
the elastic half-space is obtained by double integra-
tion of differential deformation caused by additional
stresses over the area according to Steinbrenner’s
solution [9].

(2 0
" gl Y24 41y
7-E, a2 +b b b

Settlement of any node (i, j) is evaluated by
numerical integration of partial settlements caused
by any single uniformly loaded rectangular mesh
element area (k, /) of foundation base boundary by
superposition of solution (41) for all divided rectan-
gular element area parts with common corner in it’s
characteristic point.

As an alternative to the elastic homogenous iso-
tropic half - space model, the quasi-linear elastic
layered soil model is also adopted to enable using of
standard widely used and experimentally determined
soil properties as the confined compressibility
modulus based on Edometer test data. Total settle-
ment of the compressible soil layer is defined by

fo.-dz
w= ===, 42)
0 MV(Z)

where H is the soil layer thickness, My, is con-
fined compressibility soil modulus on corresponding
depth z and o is additional stress function.

For actual calculations this integral equation (2)
solution is evaluated numerically in discretized form
over the depth of soil profile which is divided in
many (N) thin sub-layers of thickness Az(n) approx-
imated by constant soil compression modulus My,
and stress G, which is calculated in the centre of
sub-layer depth

Additional stress function is defined according
to the Steinbrenner’s solution for stress on depth z
below the edge of the rectangular area of dimensions

(a, b)

q a-b-z-(a2+b2+222)
== +arctg
2 (a2 +z‘7)(b2 +zz)\/a2 +bh+7

,(44)
zw/az +h 47

which is evaluated on any point of rectangular
mesh sub domain using the superposition principle
as described before.
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Numerical examples.

The numerical algorithm based on above de-
scribed procedure for combined footing system
analysis was written and implemented in Matlab
computing environment. An elastic linearly de-
formed half-space and quasi-linear elastic layered
model of horizontally layered soil are implemented
in the algorithm based on finite difference method.

Two simple examples of symmetrically loaded
combined footing system are analyzed to demon-
strate the adopted procedure.

The footing system domain was described by
uniform rectangular mesh of 20x5 cells which di-
mensions in main directions X and Y are a=b=0.5m.

Basic footing system of overall length of 10.0
m consists of two rigid footings of dimensions
(wxIxh) 2.5%2.5x0.6 m, connected with the founda-
tion beam of dimensions 0.5x5.0x0.6 m. Footing
system model mesh consist of 60 cells with node
points in their center, so the total number of un-
knowns in the problem is 60.

Graphical presentation of the combined footing
system model with its dimensions over the corre-
sponding contact area mesh is given on Fig. 9.

Figure 9 — The model of the combined footing
system

Footing system is loaded by external concen-
trated forces P1=P2=600 kN in the centre of each
footing and self weigh 225 kN, so the total load sum
is 1425 kN. Concrete Young modulus is E=3x10*
MPa and Poisson ratio v=0.17.

For a given load combined footing load contact
pressure distribution and the node displacements are
calculated. Bending moments and shear forces in
node points and characteristic sections are calculated
by integration of node forces.

The numerical calculation data of contact pres-
sure distribution and node displacements are given
for a quarter of footing system area, and bending
moments and shear forces in longitudinal axis for
half footing system length, due to symmetry of load
distribution.

Calculation data for combined footing sys-
tem on elastic half-space.

For this calculation the elastic half-space soil
model was characterized by Young modulus E=10
MPa and Poisson ratio v=0.3.

The numerical calculation data are presented in
Table 1. Calculation results for contact pressure dis-
tribution and node displacements are shown graph-
ically over footing system domain on the figures Fig.
10 and Fig. 11. Bending moments and shear forces
in footing system longitudinal axis are shown on the
Fig. 12.

50- i L5
100~

150/ Sl

contact pressure x [kN/rﬁ]

Figure 10 — Combined footing contact pressure
distribution for the elastic half-space soil model
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Figure 11 — Combined footing node displace-
ments for the elastic half-space soil model
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Figure 12 — Combined footing bending mo-
ments and shear forces distribution for the elastic
half-space soil model
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Table 1 — Numerical calculation data for combined footing on the elastic half-space

N.oclie cont. presszure displacement length x [m] Beniilelftmo_ Shear force
(i,J) | p[kN/m7] w [m] M [KNm] N [kN]
1,1 174.375 0.024597 0 0 0
1,2 111.9333 0.024346 0.25 9.7731 78.1848
1,3 103.4954 0.024096 0.75 83.2366 196.7842
1,4 100.1282 0.023846 1.25 205.8489 273.4578
1,5 130.6441 0.023596 1.25 205.8489 -326.5422
2,1 118.3422 0.024597 1.75 55.9658 -255.6974
2,2 58.8469 0.024346 2.25 -52.8154 -172.3293
2,3 53.4642 0.024096 2.5 -89.7999 -123.547
2,4 51.1634 0.023846 2.75 -119.4714 | -113.8247
2,5 73.2836 0.023596 3.25 -171.2148 -91.9179
3,1 115.0437 0.024597 3.75 -210.9736 -66.6856
3,2 56.7569 0.024346 4.25 -237.7533 -40.2766
33 51.1526 0.024096 4.75 -251.199 -13.4577
3.4 49.1034 0.023846 5 -252.8812 | -6.35E-08
3,5 57.4027 0.023596
3,6 92.7779 0.023346 Total load 1425 kN
3,7 112.4768 0.023093 Beam load Sum 37.500 kN
3,8 119.3815 0.02286 Beam contact pressures Sum 284.594 kN
3,9 | 121.8903 | 0.022684 Beam load vs. contact pressures 247.094 KN

difference
310 122.6614 0.02259 Relative load t{)aer:ier rigid foot. to 17.809 o

Calculation data for the combined footing sys-
tem on the layered quasi-linear elastic soil model.

Horizontally layered quasi-linear elastic soil
model consists of 4 layers with parameters specified
in the Table 2.

Table 2 — Layered quasi-linear elastic soil model

properties
Layer Layer thick- | Compressibility
ness [m] modulus [kN/m”’]
1 2 10000
2 2 15000
3 3 20000
4 3 30000

The numerical calculation data are presented in
table 3. Calculation results for contact pressure dis-
tribution and node displacements are shown graph-
ically over footing system domain on the figures Fig
13 and Fig 14. Bending moments and shear forces in
longitudinal footing system axis are shown on the
Fig 15.

contact pressure [kN/ni]

Figure 13 — Combined footing contact pressure
distribution for layered quasi-linear elastic soil mod-
el

o o
o o
N — o

displacement [m]

ol
Q
@

2 s
y [m]

Figure 14 — Combined footing node displace-
ments for layered quasi-linear elastic soil model
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Table 3 — Numerical calculation data for combined footing on the layered quasi-linear elastic soil model

Node| cont. pressure | displacement length x [m] Bending moment | Shear force
(,j) | p[kKN/m] w [m] ensth x im M [kNm] N [kN]
1,1 197.139 0.03188 0 0.000 0.000
1,2 104.493 0.03141 0.25 11.497 91.972
1,3 96.624 0.03094 0.75 95.488 212.065
1,4 84.640 0.03048 1.25 219.389 269.481
1,5 107.079 0.03001 1.25 219.389 -330.519
2,1 135.362 0.03188 1.75 64.783 -274.590
2,2 25.294 0.03141 2.25 -56.897 -202.935
2,3 32.381 0.03094 2.5 -102.003 -157.914
2,4 29.649 0.03048 2.75 -140.236 -147.951
2,5 60.898 0.03001 3.25 -208.665 -123.504
3,1 135.362 0.03188 3.75 -262.830 -91.781
32 145.777 0.03188 4.25 -299.954 -56.122
3,3 40.390 0.03141 4.75 -318.750 -18.850
3,4 51.352 0.03094 5 -321.106 -1.035E-08
3,5 59.495 0.03048
3,6 99.214 0.03001 Total load 1425 kN
3,7 94.701 0.02954 Beam load Sum 37.500 kN
3,8 130.879 0.02908 Beam contact pressures Sum 353.327 kN
39 | 152,901 0.02868 Beam load vs. contact 315.827 kN

pressures difference
3,10 | 162377 0.02838 Relative load transfer rigid 22.762 %
foot. to beam

Bending Moments

bending moment [kNm]

400

4 6
length x [m]

Shear Forces

400 - .

200

shear force [kN]
Q

-200

-400
0 4 6
length x [m]

Figure 15 — Combined footing bending mo-
ments and shear forces distribution for layered qua-
si-linear elastic soil model

To evaluate influence of footing system rigidity
on system parts mutual interaction effects, the para-
metric analysis was conducted varying the beam
height. Numerical calculation data of basic footing
design parameters for different beam heights are
presented in table 4. Graphical presentation of para-
metric analysis results are shown on the figures
Fig. 16 and Fig. 17.

The contact pressure distribution differences
between two soil models are generally moderate and
are the most visible on the flexible foundation beam
where maximum differences for presented examples
are of the order of 25 %.

The parametric analysis of footing system con-
ducted by varying the beam height in the larger
range of beam thickness, the load transfer from the
rigid footings to the foundation beam has been
changed less than 10%, which shows that the influ-
ence of foundation beam rigidity has does not have
crucial influence on the foundation interaction ef-
fects.

As can be seen from analysis data the chosen
soil model has more than twice as much influence on
obtained foundation interaction effects than founda-
tion beam stiffness which in the case of used soil
models amounts up to 20 %.

Differential settlements are more dependent on
foundation beam stiffness and maximum differential
node settlements over the contact plane for analyzed
examples varies in the range of about 10% to 20% of
total displacement.

Bending moments and shear forces differences
distribution also seem to depend more on used soil
model than on the foundation beam rigidity
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Table 4 — Comparison of calculation data for different beam height

}]13 cam | Max. beam cen- | Max.beam |y - igrereniial node | Load transfer to
eight | tre bend. moment | edge shear displ. [mm, (%)] | beam [KN, (%)]
[m] [KNm] force [kN] Pl Lmm, (70 (70
'0.3 -201.9 312.1 5.15, (20.45) 225.4, (16.25)
0.4 -221.5 316.6 3.89, (15.54) 234.6, (16.91)
'0.5 -239.5 322.9 2.83, (11.43) 242.1, (17.45)
'0.6 -252.9 326.5 2.01, (8.159) 247.1, (17.81)
0.6 -321.1 330.5 3.50, (12.33) 315.8, (22.76)
" elastic linear half-space model; * quasi-linear elastic layered soil medium
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Figure 16 — Comparison of contact pressures
and displacements for combined footing on
elastic half-space depending on different beam
height

Conclusions

In this work the procedure for the combined
footing analysis using the finite difference method is
presented.

Analysis results show that more realistic con-
tact pressure distribution can be determined by tak-
ing into account mutual interaction of the rigid and
flexible parts of combined footing system.

From presented results it is shown that interac-
tion can cause significant amount of load to be redis-
tributed from rigid footings to the foundation beam
so the bending moments and shear forces distribu-
tions are affected by the interaction too.

It is quite interesting that the foundation beam
rigidity change in the rather large scale does not
have so significant influence on the interaction as it
could be supposed. From conducted parametric
analysis can be concluded that the analysis results
more depend on implemented soil model.

Obtained results indicate that mutual interaction
of the rigid and flexible parts of combined footing
should be taken into consideration when calculating
combined foundation systems in shallow foundation
design to account for mutual interaction effects of
the footing system parts to determine bending mo-
ments and shear forces accurately. In the conditions
of inaccurately evaluated bending moments and
shear forces construction can be exposed to the ex-

Bending Moments
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Figure 17 — Comparison of bending moments

and shear forces for combined footing on elastic half-

space depending on different beam height

cess tensional and shear stresses mo, which can lead
to the crack occurrence.

Although in the presented analysis relatively
simple soil models are used it can be further im-
proved by implementing more refined soil models,
to enable taking into account more complex soil
properties.

The conducted analysis demonstrate that finite
difference method can be sufficiently well be
adapted for meeting the boundary conditions of
combined foundation system. It is also shown that
developed algorithm is applicable for analysis of the
combined shallow foundation system in order to de-
termine contact stresses and displacements distribu-
tions which is necessary for foundation design. Ac-
cordingly, the other parameters for foundation de-
sign as bending moments and shear forces can be
determined more accurately.
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Haoituna oo peoaxyii 09.10.2015

Penenszenr: na.1.H., npod. Komomieup JI.B.,
Opnecbka nepKaBHAa akajeMis TEXHIYHOTO Perylito-
BaHHs Ta aKkocTi, M. Ofeca.

Tomucnas Konpexk, boxo Cogo, 1.7.H., Ajlekcell AHUCKHH

KOHTAKTHAS 3AJJAYA KOMBUHUPOBAHHOM OIIOPBI, KOTOPASI OCHOBBIABETCSI HA
YIIPYT'OM ITOJYITPOCTPAHCTBE

Buvina npoananuzuposana konmaxmuas 3a0a4a KOMOUHUPOBAHHOT ONOPbL, KOMOPAsL OCHOBLIBACMCS HA
YHPY20M ROJIYRPOCIMPAHCIIGE, WU CIMPAMUDUYUPOBAHHOM YNPY20M OCHOBAHUU. B omuuuue om ynpowennvix
00X NPEONONONACEHUT U MEMOO08 NPOEKMUPOBAHUL MAKO20 OCHOBAHUL, 30€Ch AHAIU3 ObLI NPOBeOeH HA
O0BYX JICECMKUX ONOPAX, COCOUHEHHBIX YUPY2Otl 2UOKOT (DYHOAMEHMANLHOU DAIKOT C YHemOM PA3IUYHbIX XA-
PAaKmepucmux omoenbHblX yacmeil QpyHoameHma (dcecmkue nPOmue 2UOKUX) U yCciousi HenpepblGHOCMU HA
UX COCOUHEHUSIX, C AKYEHTNOM HA UX 63AUMOGIUAHUSL, CGAZAHHBIE C OCHOBHBIM PACNPEOeNeHUeM HASPY3KU
noyegul. Hucnennviii ananus Obvlil 6bINOJIHEH KOMOUHUPOBAHUEM KOHEUHBIX PAZHOCMEN U MemOOOM 2PAHUYHBIX
9/IEMEHMOB HA OOUHAKOBOIU YemblpeXCIMOPOHHEU CemKe.

Knarouessie cnoea: kombunuposannwviili Yynoamenm, 83aumooeticmeue, ynpy2oe nojiynpocmpancmeo,
YApY2as MHO2OCHOUHAS cPeda, MemoO KOHEYHIX DIIEMEHINO08, Memoo0 ePAHUYHBIX JNEMEHIN08, CO2NACOBAHUE.

Towmicaas Konpek, bo:xko Comnnmo, n1.17.H., Onekciii AHickin

KOHTAKTHA 3AJIAYA KOMBIHOBAHOI OITOPH, IIIO IPYHTYEThCSI HA
MNPYXHOMY HIBITPOCTOPI

byna npoananizosana konmakmua 3a0aua KOMOIHOBAHOI ONOPU, AKA TPYHMYEMbCA HA NPYIHCHOMY NiGH-
pocmopi, abo cmpamugixosaniil npyoicHii ocnosi. Ha 6iominy 6i0 cnpowjenux 3aeanvhux npunyweHv i me-
moOi8 NPOeKMYB8AHHS MAKOI OCHOGU, MYM aHANi3 6Y6 NpogedeHuUll Ha 080X JCOPCHMKUX ONOPAX, CHONYUEHUX
HPYACHOIO SHYUKOK (PYHOAMEHMANbHOIO OANKOKW 3 VPAXYBAHHAM PIHUX XAPAKMEPUCTNUK OKPEMUX YACTIUH
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@yHoamenmy (drcopcmxi npomu cHyYKux) i yMou Oe3nepepeHocmi Ha Ix 3 €OHAHHAX, 3 AKYEHMOM HA IX 83a-
EMOGNIIUB, NOB SI3AHI 3 OCHOBHUM PO3NO0IIOM HABAHMANdCEeHHs IpYyHmYy. YHuceavHuil ananiz 0y8 GUKOHAHULL
KOMOIHYSAHHAM KIHYeSUX PI3HUYD | MEMOOOM SPAHUMHUX e/leMeHMIé HA OOHAKOGIH YOMUPUCMOPORNIT Cimy.

Kniouosi cnosa: kombinosanuii pynoamenm, 83aemMoois, NPYICHUI RiGRPOCMIp, NPYICHA bazamouapo-
6a cepeoa, Memoo KiHYeGUX e1eMeHmis, Memoo PAHUYHUX eIeMEHMIB, Y32004CeHHSL.

YK 519.878.5
B. ®. Opoﬁeﬁ', I.T.H., A. D. JIamemcol, 1.1.H., JI. B. Kosomiens?, 1.1.H., O. M. .JInmapemco', K.T.H.

1 o . o . . o .
Ooecvkuil HayioHanbHUil noaimexHiunuil yuigepcumem, m. Odeca

2 . . .
Ooecvka OepoicasHa akademiss mexHiuHo2o pe2ynosants ma axocmi, m. Odeca

METO/ IT'PAHUYHBIX JIEMEHTOB B 3ATAYAX YCTOMUYHUBOCTH IVIOCKOM ®OPMBI
MN3I'NBA BAJIOK ITPAAMOYI'OJIBHOI'O CEYEHUSA.

Ipeocmasnen aneopumm pewtenus 3a0a4 YCMoUYU80CMU HIOCKOU (hopmbl uz2uda OAIOK Npamoy2oivb-
HO20 ceueHusi (MOHKOU NONOCbl) ¢ NOMOWDBIO YUCACHHO-AHATUMUYECKO20 GAPUAHING MemOo0d 2PAHUUHBIX
anemenmos. Llenvio pabomel A6151emMcst NOCMPOEHUe HOBbIX peuieHull OupepenyuanbHbvlx YpasHeHull 3a0ay
yemotyusocmu. banku ¢ cevenuamu @ eude y3koul nonocvl umeiom 6ojaee GblCOKYI0 HPOUHOCHb U JHCeCH-
KOCMb, 0OHAKO, NPU NONEPeyHoll HazpysKe, 603HUKAeN ONACHOCb NOMePU YCMOUYUBOCIU NAOCKOU (hopMbl
uzeuba. B smom ciyvae danka 0ononnumensHo us2ubaemcs 6 Opyeoil noCKOCmu U 3akpyuueaemcs. Bosnu-
Kaem u32UOHO-KpYmMuibHas (hopma nomepu YCmouuugocmu, npu KoOmopou noAeusomes 60avuiue nepeme-
WeHus U MOJICem Hacmynums paspyuterue konempykyuu. Teopusi peutenus noOOOHBIX 3a0ay HYICOAemcsl 6
passumuu, m.x. cyujecmsyloujue pe3yibmamsl 6ecbMa CJIOMCHO PACHPOCMPAHUMb HA HepaspesHble OAIKu U
pamul. Memoo epanuyHelx dNeMEHMO8 NO360JAem CYWEeCmEeHHO YRPOCIUMS NPOYeCcc peuletus, No6biCUmMb
MOYHOCHIL U OOCHOBEPHOCHTL PE3YIbMAmMO8 U PACHPOCMPAHUND NOJIVYEHHbIE peuleHUs Ha OoJiee COJICHbLe

KOHCmpYKyuu, yem npocmo oanku. Pacuemul kxpumuueckux cui evinonenst 6 cpeoe MATLAB.
Knaroueesie cnoea: memoo epaHuyHuIX 3j1eMeHmos, YCmouuu80Cny NOCKOU hopmul uzeuda, baiku nps-

Moy2onbHo20 ceveHus, MATLAB.

banku c ceueHuem B BHUIE Y3KOW MOJIOCHI
UMeIOT OoJiee BBICOKYIO MPOYHOCTh U JKECTKOCTh. B
STOW CBSI3M OHHU HMMEIOT OOJbIIOe TMPHMEHEHHEe B
pasnMuHbIX OaJIOYHbIX M PaMHBIX KOHCTPYKLIMSX
MalIMHOCTPOCHHUS, CTPOUTEIbCTBA, MOCTOB W T.J.
OpHako, mnpu OOJBIIOM OTHOLIEHWH BBICOTHI K
IIUPUHE CEUeHHS, BO3HHKAET peajbHas ONAacHOCTh
MOTEpU YCTOHUMBOCTH TUIOCKOW (opMbl  M3rubda
Takod Oanku. OHa JOMOJHUTENLHO TIOJTyYaeT
nporuObl B JApYyrod  IMJOCKOCTH M YIJIbI
3aKkpyuuBaHusa. Ecnu mepeMelneHus OKa3bIBalOTCS
CJIMIIKOM OOJIBIIUMU, KOHCTPYKLIUS pa3pylIaeTcs.
ITosroMy BecbMa BaXXHO UMETh HAJEXKHYIO,
JIOCTOBEPHYIO W JIOCTaTOYHO MPOCTYIO TEOPHIO
pelIeHUs TaKUX 3a/1a4 yCTOHYMBOCTH.

IlepBeie  pemeHus 3agady  YCTOWYMBOCTH
IIOCKOM (hopMbl M3ruda 0ajok ¢ CeueHUEM B BUIC
Y3KOM moJiockl ObLTM TOJTy4eHbI emie B 19 Beke [1].
K HacTrosimemy BpeMeHH peleHO JOCTaTOYHO MHOTO
3agay storo Ttuna [2, 3]. Ilpu pelienun 3anay
YCTOMYMBOCTH OallOK IMOA JIEHUCTBUEM IMOMEPEeUHOM
Harpy3ku nuddepeHMalbHOe YpaBHEHUE W €ro
pellieHue 3anuchIBaJIOCh YIS yriia 3akpy4uBaHus. B
peuIeHUH WCI0JIb30BAJIMCh hyHKLUMH,
MPEICTABIISIONINE coboii OeCKOHEYHBIE

3HaKOuUepeAyIolIrecsl CTeNeHHble psabl. B arom
cllyyae TOYHOCTb pe3yjbTaTa 3aBUCUT OT 4YMCIa
YJIeHOB psifa, YTo He Bcerda yaooHo. Kpome Toro,
nMeroImecs penieHus BeChMa CJIOXKHO
WCTIONIb30BaTh Ul pelleHHs 3aJady YCTOMUMBOCTH
Hepaspe3HbIX O0allok M paM, TOCKOJIbKY OHH
HeTIOJTHbIE (He BKJTIOYAIOT Apyrue napametpsl). Ecmu
)K€ TPUMEHUTh K OTUM 3ajjauaM  allTOpPUTM
YUCJIEHHO-aHAJIMTUYECKOT0  METOAa  [PaHUYHbIX
anemeHToB (MI'D) [4], TO TOSBUTCS BO3MOXKHOCTH
CYLIECTBEHHO YNPOCTUTh TMPOLEAYpY pelieHus,
MOBBICUTh TOYHOCTb M JIOCTOBEPHOCTb PE3yJIbTAaTOB
W TIPUMEHSATh HOBbIE pelueHus OudQepeHLranbHbIX
ypaBHeHUH B OoJiee CIOXKHBIX KOHCTPYKLHSX, YeM
pocThie OajKu.

Lenbto paboTbl sIBNSETCS MOCTPOSHHE HOBBIX
pewiennii auddepeHUMANbHBIX ypaBHEHUI 3a1au
YCTOMUMBOCTH TJIOCKOM (opmbl u3ruba Oayiok ¢
CeueHUeM B BUAE Y3KOH MOJOCHl M MpPUMEHEHHUe
9TUX pelleHU B KOHKPETHBIX 3a7ayax.

JuddepeHumanbHoe ypaBHEeHUE YCTOHYHMBOCTH
nBytaBpooii 6anku BeiBes C. I1. Tumomenko [1].
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